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This paper describes two analysis methods -- one
deterministic, the other stochastic -- for computing

maximized and time-correlated gust loads for aircraft with

nonlinear control systems. The first method is based on

matched filter theory; the second is based on stochastic

simulation. The paper summarizes the methods, discusses

the selection of gust intensity for each method and presents
numerical results. A strong similarity between the results

from the two methods is seen to exist for both linear and

nonlinear configurations.

presented at a work-in-progress session at an earlier
conference (ref. 5) and since then an improvement in the

method has been made. The improvement involves what is

referred to in the SSB Method as the extraction and

averaging procedure. This procedure has been made to be

independent of answers from the MFB Method.

The purpose of this paper is to present numerical results

recently obtained by applying these two methods. The
mathematical model is a model of a current transport aircraft

equipped with a nonlinear yaw damper. The model has the

same level of complexity as those commonly used in the

aircraft industry.

For several years NASA Langley Research Center has
conducted research in the area of time correlated gust loads

and has published a number of papers on the subject (refs. 1-

5). The initial research was restricted to mathematically

linear systems (refs. 1-3). Recently, however, the focus of
the research has been on defining methods that will compute

design gust loads for an airplane with a nonlinear control

system (refs. 4 and 5). To date, two such methods have
been defined: one is based on matched filter theory; the

other is based on stochastic simulation.

The Matched-Ftlter-Based (MFB) Method was developed

first and was reported on in reference 4. The MFB Method

employs optimization to solve for its answers and this
method comes in two varieties: the first uses a one-

dimensional search procedure; the second a multi-

dimensional search procedure. Based on preliminary results,

the first is significantly faster to run and gives design loads

only slightly lower in magnitude than the second.

The Stochastic-Simulation-Based (SSB) Method has

evolved over the past two years. The SSB Method was

Aerospace Engineer, Member AIAA.Staff Engineer, Senior Member AIAA. .
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Descrintion of Methods

This section of the paper presents brief descriptions of

two analysis methods for computing maximized and time-

correlated gust loads for linear and nonlinear airplanes. The
first method is the Matched-Filter-Based Method; the second,

the Stochastic-Simulation-Based Method.

Matched Filter Based Method

The Matched-Filter-Based (MI_) Method is implement-

ed one way for a linear airplane and two possible ways for a

nonlinear airplane.

Implementation for Linear Airolane. A detailed

theoretical development of the MFB Method for linear

systems can be found in reference 2. The signal flow

diagram in figure 1 outlines the implementation and
illustrates the intermediate and final products of the process.

Transfer-function representations of atmospheric

turbulence and airplane loads are combined in series and

represent the "known dynamics" boxes in the figure. A

transfer-function representation of the von Karman spectrum
in chosen for the gust filter. Load y is the load to be

maximized. Loads z 1 through Zn are the loads to be time
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Fig. 1. MFB Linear Method signal flow diagram.

correlated with load y. There are three major steps in the
process:

The application of an impulse function of unit
strength to the combined linear system, producing the
impulse response of load y. Based on the time required for
the load impulse responses to damp out, a value of to is
selected. Too large a value will unduly increase the amount
of computations required; too small a value will not give
accurate answers.

fKf9.._ The normalization of this impulse response by
its own energy, followed by its reversal in time.

fflfdL_ The application of this normalized reversed
signal to the combined linear system, producing time

histories of load y and time histories of loads z l through zn.
Within the time history of load y, the maximum value is
Ymax. Theory guarantees that there is no other normalized

signal that, when applied to the combined linear system,
will produce a value of y larger than Ymax. This guarantee
is a fundamental result of the MFB Linear Method

For simplicity of discussion throughout this paper and
to avoid confusion between these three steps and the method
of reference 6, these three steps will be referred to as the
"MFB Linear Method."

Implementation for Nonlinear Airplane -One-
Dimensional Search Procedure, A detailed development of
the MFB Methods for a nonlinear airplane can be found in
reference 4. Figure 2 contains a signal flow diagram of the
two possible implementations. Although very similar to
figure 1, figure 2 contains some important differences that
are indicated by the shaded boxes, quotation marks, and
dashed lines.

In figure 2 the initial impulse may have a non-unity
strength; the aircraft loads portion of the known dynamics
box contains nonlinearities; and the shape of the excitation
waveform and the value of Ymax are functions of the initial
impulse strength. In addition, the "matched" excitation
waveform and the "matched" load are shown in quotes
because, for nonlinear systems, there is no guarantee that
Ymax is a global maximum.
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Fig. 2. Nonlinear MFB signal flow diagram for one-dimensional and multi-dimensional searches.

The application of the one-dimensional search procedure
is as follows:

Select a value of ag.

Select a range of values of impulse strength, k.

,_4L3., Perform steps 1 through 3 of the MFB Linear
Method for each value of k, obtaining values of Ymax and
corresponding "matched" excitation waveforms.

From these values of Ymax, select the

maximum value of Ymax and its corresponding "matched"
excitation waveform and corresponding impulse strength.

Implementation for Nonlinear Airplane - Multi-
Dimensional Search Procedure. The multi-dimensional

search procedure uses as its starting point the "matched"
excitation waveform from step 4 of the one-dimensional
search procedure. In an attempt to obtain an even larger
value of Ymax, a constrained optimization scheme alters the
shape but not the energy of the excitation waveform. The
waveform is represented by a linear combination of
Chebyshev polynomials. The coefficients of the
polynomials are the design variables used in the
optimization procedure. The converged value of Ymax is

greater than or equal to the Ymax obtained from the one-
dimensional search. The dashed line in the figure illuswates

the optimization loop.

Stochastic Simulation Method

The Stochastic-Simulation-Based (SSB) Method is
implemented the same way for both linear and nonlinear

airplanes. Figure 3 outlines the implementation. There are
four major steps in the process:

A value of (;g is selected for the gust filter.
Then an approximation to Gaussian white noise is applied
to the gust filter producing a time history of stationary
Gaussian atmospheric turbulence with a yon Karman power
spectral density function. The turbulence time history is
then applied, by simulation, to the aircraft model, producing
a load time history.

For each load output, a search of the time
history of that load locates "points in time" where peak
loads occur. Of these peaks, those which have the largest
magnitude within a time span of :t_o seconds are identified
for "extraction." In the extraction procedure, -+'Cosecond's
worth of all of the load time histories and -+xo second's
worth of the corresponding gust time history, centered on

3



m

White Noise
Excitation

Known Dynamics (Linear or Nonlinear)

Aircrafl

J (Pre-Filter)% :Uo/_d

Loads

[ZY--

Von Karman

Gust

A A,..,
VvVv

Gust Profile

Extracting and Averaging Procedure

Averaged-Extracted
Waveform

[ "vU

Averaged-Extracted
Gust Profile

Load Time
History

Averaged-Extracted
Load'time History

Fig. 3. SSB Method signal flow diagram.

the point in time where the peak occurred, are saved. Figure

4 shows the extraction procedure, where a load time history

and the corresponding gust profile time history have been
extracted.

The extracted load time histories and

corresponding gust time histories are "lined up in time" so

that each begins at a relative time of zero and each ends 2_o

seconds later. Figure 5 shows eleven extracted gust and load
time histories lined up in time and plotted together. At each

point in time the quantities are averaged, producing
"averaged-extracted" gust prof'des and load time histories.

Calculate statistical quantities: level crossings,
zero crossings, root-mean-square values.

In reference 5, the extraction performed in step 2 was
restricted to loads within +10% of the MFB answer. Here,
that restriction has been removed.

Selectinn of Gust Intensities

The MFB and SSB Methods both employ the following

transfer function approximation of the von Karman power

spectral density function (ref. 6)

wl- oiI z_r--_'_L [1 + 2. 618(L/V).][I + O.1298(L/V)s], [_+z o,(t./v). I_ +o.a_t./v).I t+o.o89s(Lrv).] (1)

This expression is referred to in this paper as the gust

filter, where the quantity Og is the intensity of the gust. In

the power spectrum, Og is the standard deviation -- which,
assuming zero mean, is also equal to the root-mean-square,

or RMS, value -- of gust velocity. Both the MFB and the

SSB Methods use quantity ag as gust intensity. In order to
compare the results from the MFB Method with the results

from the SSB Method, it is necessary to properly select the

gust intensity for each method.

The purpose of this section of the paper is to present

the reasoning behind the selection of the values of ag for
MFB and for SSB Methods so that the results of the two

methods may be compared. It will be shown that the gust

intensities used for the two analyses differ by a factor of rid,

a design ratio of peak to RMS values.

Design Envelope Criterion. The following equation,

from reference 7, expresses the "design value" of quantity y
as defined in the design envelope criterion

Ydesign = AyUo (2)

where the quantity Ay is the RMS value of quantity y per

unit RMS gust intensity, obtained from a conventional

random process analysis of the airplane and Ua is specified

in the criterion. Quantity Ydesign is interpreted as a peak
value. From reference 7 the quantity U¢_ in equation (2) is

shown to be the product of the gust RMS value and the
design ratio of peak value of load to RMS value of load, or

Uo = asTId (3)

4
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Although the criterion specifies only the product of, not the

breakdown between, Og and rid in equation (3), the

breakdown is important in the selection of gust intensities

for the SSB Method and, therefore, in comparing MFB and
SSB results.

MFB Gust Intensity. Reference 4 shows that, as a

consequence of the normalization of the excitation waveform

by its own energy and the use of unity gust intensity, the
quantity Ymax from the MFB Linear Method is equal to the

quantity Ay from a conventional random process analysis,

or

D

Ymax (t_g= I)= Ay (4)

In equation (4) Ymax is interpreted as an RMS value,

not a peak value. Substituting equation (4) into equation

(2), Ydesign is now

Ydesign= Ymax(_g = l)Ua (5)

If, in performing the MFB Linear Method, Ua is used

for the gust intensity then the quantity Ymax is equal to

Ymax (ag = Ua) = AyU a (6)

The right hand sides of equations (2) and (6) are seen to
be equal, therefore

Ydcsign= Ymax (ag = U a) (7)

Two options for the value of t_g have been offered:

tZg = 1, for which Ydesign is defined by equation (5); and

Ctg = Ucr, for which Ydesign is defined by equation (7).

When analyzing a linear system the choice of t_g is

irrelevant because the same value of Ydesign will be obtained

in either case. However, when nonlinearities are introduced

into aircraft control systems, loads are not simply

proportional to gust intensity. Consequently, C_g should be
set to Ucr in the MFB nonlinear calculations, or

£rg MFB = Uo (8)

and the resulting "Ymax" values from the method should be

interpreted as Ydesign.

SSB Gust Intensity, In the SSB Method, because

random inputs are applied to the simulation, the outputs are

already "peaks" in the above sense. Referring again to

equation (3) and recalling that the breakdown between t_g
and _d is not specified (only their product is specified), the

following equation can be rewritten for the SSB gust
intensity

Ua
= -- (9)

ffgSSB 'qd

To use equation (9) the analyst must select a value for

"qd. This approach was applied by Gould in his work with
stochastic simulation (ref. 8) in which he used the value of 3

for rid.

Mathematical Model

A mathematical model of a small two-engine jet

transport equipped with a nonlinear yaw damper is used for

all the calculations performed in this paper. Figure 6 depicts
the nonlinear math model in block diagram form. The

portion of the math model that represents the airplane is

linear and consists of twelve anti symmetric flexible modes

and three rigid-body lateral-directional modes. A doublet

lattice code was used to calculate the unsteady aerodynamics

for a Mach number of 0.85. These unsteady aerodynamic

Linear Aircraft
Equations
of Motion

_. LmKIs 1, 2 and 3

Linear Part
of Ysw

DamperSystem

Fig. 6. Block diagram

Limited Inlegrstor

I ¥ Y t

of transport model with nonlinear control system.
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forces were converted to the s-plane by evaluating the

coefficients of a series proposed by Richardson (ref. 9). An

s-plane modeling technique was used to describe the lag

states representing the gust penetration and consisted of two
states. The basic aeroelastic equations of motion were

composed of 75 states for a flight condition at an altitude of

28,000 feet. The yaw damper control system has two
nonlinear elements: a rate limiter and a deflection limiter for

the rudder. The structure of the yaw damper is shown in the

figure. The yaw damper contributed nine additional states to

the math model. The final state-space realization had 86

states. The input to the model was lateral gust velocity and

the output from the model consists of three loads at the root
of the vertical tail. MATRIXx SYSTEM BUILD 10 was

used to consmJct the nonlinear simulation model.

Results and Discussion

This section of the paper describes numerical results

obtained by applying the MFB and SSB Methods to linear

and nonlinear models. For the particular nonlinear model

chosen for this study unrealistically large values of gust

intensity had to be used in order to trigger the nonlinearities

present in the system. For purposes of comparing results
for linear and nonlinear models, the same large values of

gust intensity were used for both.

This section is in four parts. The first describes the

calculations performed and presents the nomenclature that

will be used throughout this section. The second and third
sections discuss the results for the linear and nonlinear

models, respectively. The fourth section makes a

comparison of the methods.

Summary of Analyses Performed

Table 1 contains a summary of the models used (linear

or nonlinear), methods employed (MFB or SSB), and

parameter values (C_g, to, Xo, and T).

For the SSB calculations the same white noise input

was used in all the analyses. Also, _id=3 so that MFB and

SSB analyses use gust intensifies that differ by a factor of 3

as explained in the Selection of Gust Intensities section of

the paper.

Table 1. Calculations performed.

Model

Type

Linear

Nonlinear

Matched-Rller Based

Urlesr

MFB-L

.85Ws
to-lOs

1-dim Mulli-dim

MFB-1D MFB-MD

o0.85/170/ _g. 85 ft/s
240/255 Ws to= 10 s

k-lOs

ISlochaslic-Simulation
Based

SSBt

(_. 28.33 II/s
_;- 3,6,9,12 s
T- 450 s

SSB NL

ag= 28.33 ft/s
_o-6S
"1".'LSOS

The bold face titles in the various boxes are to be used

when discussing the various results. For example, when
MFB-L is cited in the text it refers to the MFB linear

analysis of the linear airplane. MFB- I D refers to the one-
dimensional search results for the nonlinear model.

Results Usin_ The Linear Model

One of the intents of this paper is to demonstrate,

through the numerical results, that the MFB and SSB

Methods yield strikingly similar results. Figures 7 and 8
contain the MFB and SSB results for the linear model. In

comparing the shapes of the corresponding time-history

plots, it is apparent that the results are quite similar. In
addition, the load I peak values are within 3.8% of each

other.

The SSB L avemged-exwacted peaks for load 1 are plotted

as functions of x o in figure 9. These averaged peaks have

been normalized by the load 1 RMS value and are

represented by the dots in the figure. Vertical bars and
brackets indicating the largest and smallest extracted-

normalized peaks have also been provided. The largest-

extracted peak is independent of x o and is equal to the largest

peak in the simulation. The smallest- and the averaged-

extracted peaks generally increase with increasing Xo and

approach the largest peak in the simulation record.

Theoretically, the largest peak in the simulation increases

with increasing simulation length T as the probability of

encountering higher and higher peaks increases. For small

x o values, many peaks near zero will enter the average

tending to reduce the averaged-peak value. Thus, by such
variations of T and Xo, there appears to be some latitude in

the range of averaged-extracted-peak value that can be

obtained.

The data shown in figure 9 for Xo=6 seconds,

corresponds to the data presented in figure 8(b). The value
of the normalized-averaged-extracted peak is in the

neighborhood of 3. This corresponds to the factor, TId, that
was used in obtaining the SSB gust intensity, and serves to

show why the results in figures 7 and 8 are the same. As

shown in figure 9, the normalized-averaged-extracted peak for

x o values other than 6 seconds differ from 3 indicating that
the results for those x o values would not be the same as the
MFB answer.

Results Usin_ Nonlinear Model

The types of nonlinearities of most concern in

determining aircraft design loads are control system
nonlinearities. For low intensity disturbances, it can be

expected that control system nonlinearities will have little

effect on the load responses. Thus, the nonlinear response

will be much like its linear counterpart. Consequently, any

parameter that affects the disturbance level can be expected to
have a threshold below which the system behaves linearly.
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For the methods described in this paper, two

parameters affect disturbance intensity. A parameter

common to all the analyses was the gust intensity, ag. The

other parameter was the impulse strength (k) which is only
used in the MFB one-dimensional search.

For clarity the parts of this subsection are labeled

according to the results discussed.

MFB-1D. Before the MFB-1D results are described and

interpreted, a discussion of the general effect of the impulse

strength and gust intensity on nonlinear systems is in order.

The variation of the impulse strength (k) affects the

MFB-1D analysis by changing the shape of the excitation
waveform. For sufficiently low impulse strengths, the

shape of the excitation waveform for nonlinear models will
be invariant with k. While in this invariant region, the

excitation waveform will be the same as that obtained from

the linear model. For larger intensities the system
nonlinearities will cause the impulse responses and

corresponding excitation waveforms to change shape.

Consequently, they will no longer be the same as those

obtained from the linear system.

The gust intensity affects the one-dimensional search by

scaling the excitation waveform prior to being applied to the
nonlinear model. Consequently, a low gust intensity should

result in the nonlinear model behaving linearly. As gust

intensity is increased beyond some threshold the nonlinear

model response will begin to deviate from that of its linear

counterpart.

One-dimensional search results were obtained at the four

gust intensifies shown in the box labeled MFB-1D in table

1. Figure 10 shows the results for each of the three loads.

Each part of figure 10 contains plots of normalized
maximized load as functions of impulse strength: part (a)

presents the results for maximizing load 1; part (b) for

maximizing load 2; part (c) for maximizing load 3. The

normalizing quantity for each load at each value of Og is the
value of Ymax obtained from a corresponding MFB linear

analysis of the linear model.

With the preceding discussion in mind the results

shown in figure 10 will be interpreted, beginning with load

1. The shape of the excitation waveform is invariant for
values of k below 1000. As a result, the peak loads are

invariant with k for impulse strengths less than this

threshold at all the gust intensities.

At the lowest gust intensity (85 ft/sec) the largest load

obtained from the analysis is obtained at the low values of

k. In addition, the ratio of ymax nonlinear to Ymax linear is

unity for these low k values. This indicates that the
nonlinear model behaves linearly for load 1 at this gust

intensity.
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At sufficiently large gust intensities the peak value of

load 1 occurs at an impulse sa'ength greater than 1000, with

a ratio of ymax nonlinear to ymax linear being larger than in

the invariant region. This indicates that the nonlinearity has

a significant effect on the load, and is of great importance at
this gust intensity.

Similar trends are noted for load 2 in figure 10. Load 3,

on the other hand, is invariant with gust intensity, and the
largest load is obtained for low values of k. This indicates

that the nonlinear control system has very little effect on

load 3 at all the gust intensities investigated.

Two separate multi-dimensional searches

were performed on the nonlinear transport model to
maximize load 2 at a gust intensity of 85 ft./see. The

number of design variables used in the optimization

procedure was 160. Reference 4 gives a detailed description
of what the design variables represent and how to select the
proper number to use.

These MFB-MD results ate shown plotted with the

corresponding Mb'B-1D curve from figure 10(b). While the

value of k has no bearing on the multi-dimensional result,

the location of each of the two sets of starting and ending
points with respect to the k-axis indicates the value that was

used to generate the starting excitation waveform for the

search. The first search used, as the initial condition, the

critical gust profile corresponding to an impulse strength of

900; the other, the critical gust profile corresponding to an
impulse strength of 4300. The initial conditions are

depicted in the figure by open symbols; the optimized
results, by closed symbols.

The MFB-MD results indicate that, for this particular
load and gust intensity, the multi-dimensional search
increased the maximum value of load 2 no more than the

highest value achieved by the one-dimensional search. In

this instance, then, the one-dimensional search was

sufficient to provide the maximized load.

Comparison of MFB-1D and SS.13N. Again keeping in
mind that one of the intents of this paper is to demonstrate

that the MFB and SSB Methods yield similar results, a
comparison can be made of the nonlinear time histories.

Figures 12 and 13 contain the MFB-1D and SSBN results,

respectively. These analyses were performed with Uff= 240
ft./see. As with the analogous linear results, the time-

history plots obtained using in the MFB-1D and SSB N

calculations for the nonlinear model are quite similar in
shape and peak load value. Thus, the one-dimensional

search obtained the worst case gust profile for the nonlinear

model without the need for MFB multi-dimensional search.

By comparing the linear results in figures 7 and 8 with

the nonlinear results in figure 12 and 13, a significant
difference is noted between the linear results and the

nonlinear results. This observation indicates that there is a

substantial difference between the linear and nonlinear

response at this Ua value. This indicates the need for using
methods capable of handling the nonlinearities. This result

is also consistent with the one-dimensional search prediction

that the nonlinearities would significantly affect aircraft

response at this Ua value. These observations suggest that

the MFB one-dimensional search is capable of efficiently

locating the worst case gust profile and corresponding
maximized load.

Comparison of SSB N and SSBL. To further explore
the effect of gust intensity on the response of the nonlinear

aircraft the normalized load level exceedences were extracted

from the SSB linear and nonlinear analyses time histories.
Figure 14 shows the level crossing results of both the

SSBN and SSBL analyses for each of the three loads. For

each load, the solid line represents the theoretical level-

crossing curve predicted by Rice's equation. The symbols
represent the number of crossings of various load levels.

The load levels have been normalized by corresponding Cg
values.

Figure 14 shows the linear results and the nonlinear

results at the lower gust intensity (28.33 fl./sec.) to be
essentially the same. This is consistent with the one-

dimensional search prediction where the largest load was
obtained in the invariant region, indicating linear behavior of
the nonlinear model.

The load 1 and load 2 linear results and the nonlinear

results at the larger gust intensity (80 ft./see.) differ

significantly at large load values. Again, these results are

consistent with the one-dimensional search prediction where
the largest loads obtained for loads 1 and 2 did not occur in

the invariant region, thus indicating the importance of the
nonlinearity.

Figure 14 shows the load 3 linear results and the

nonlinear results at all the gust intensities to be quite
similar. This is consistent with the one-dimensional search

prediction where the largest load was obtained in the

invariant region and the nonlinearity had little effect on this
load.

Comnarison of Efficiencies of the
MFB and SSB Method._

Two measures may be used to compare the efficiency of
the MFB and SSB Methods. One is the amount of

computer storage required, and the other is the amount of

CPU time required to perform the calculations. The SSB

Method required approximately 25 times more storage than

the MFB Methods, and table 2 shows a comparison of the

approximate total seconds of simulation required to perform
a complete analysis for this model at one gust intensity.
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Table 2. Comparison of simulation time required.

Model
Type

Linear

Nonlinear

Matched-Filter Based Stochastic-Sire ulation
Based

Linear 1-<lira Multi-dim

60 Sec - 450 Sec

_ 300 Sec 10,800 Sec 450 Sec

For the linear model, the MFB Method is more efficient

than the SSB Method. For nonlinear systems the MFB

multi-dimensional search is much more expensive that the

SSB Method, while the MFB one-dimensional search

Gust

Velocity
irYSec.

1000

-1000

-2000

5 10 15

Time, Sec.

a) Critical gust profile.

2o

1oooo

L_dl

50OO

-50O0
0

700O00

• • |

5 10 15

Time,Sec.

b) Maximized load.

20

requires less time that the SSB Method. The SSB Method

requires the same amount of simulation time for both linear
and nonlinear models.

Since the multi-dimensional search is prohibitively

expensive, the practical options for methods applicable to

nonlinear systems are the MFB one-dimensional search and
the SSB Method. Based on the preceding discussion, the

one-dimensional search is able to predict the maximized

loads for nonlinear systems. In addition, it requires less

computer resources than the SSB Method. These factors

point to the MFB one-dimensional search as a means of

replacing or at least complementing stochastic approaches.

1000

Gust 0

Velocity
irYSec.

-1000

-2000
5 10 15

Time, Sec.

a) Critical gust profile.

2o

Load 1

10000

5oo0

o

-5000
0 5 10 15

Time, Sec.

b) Maximized load.

20

7000OO

Load2

Fig.

o
0 5 10 15 20

Time, Sec.

C) Time-correlated load.

Time histories of key quantities.
MFB One-Dimensional Method and

nonlinear system, to=10 sec.

¢gg=240 ft./sec.

-300000

12.

Load 2

0

-300000
0

Fig. 13.

.,j,Jitx.,,
I |

5 10 15 20

Time,Sec.

C) Time-correlated load,

Time histories of key quantities.
SSB Method and nonlinear system.

¢0=6 sec. Og=80 ft./sec.
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Number of lOO

Crossings
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1

o.1

0

1OO0O

loot

Number of 100

Crossings

lO;

1

0.1

Fig. 14.

I I

2O 40

Load Level/ a
g

a) Load 1

60

0

, \
2500

Load Level/ a
g

b) Load 2

B Rice's Equation

+ Lineadzed system,

X Nonlinear system,

o Nonlinear system,

I

0 2000

Load Level/ Org

c) Load 3

400O

Number of level crossings from SSB Method.

=28.33 ft/Soc

28.3 fl/Sec.

q3 -80.0 WSec.

Concludint_ Remark,_

This paper has described two analysis methods -- one

deterministic, the other stochastic -- for computing
maximized and time-correlated gust loads for aircraft with

nonlinear control systems. The methods, the Matched-

Filter-Based (MFB) Method and the Stochastic-Simulation-

Based (SSB) Method, were applied to a mathematical model

of a current transport aircraft equipped with a nonlinear yaw
damper.

The results predicted by the two methods are strikingly

similar and demonstrate that the key quantities from the

MFB Method (viz. critical gust prof'fle, maximized load, and

time correlated load) are realizable in the SSB Method.

Another significant finding is the relative computational

costs of performing analyses using the MFB and SSB

Methods. Based on the total amount of simulation time

required to obtain maximized and time correlated loads, the
SSB Method costs about one and a half times as much as

the MFB one-dimensional search. The cost for the MFB

multi-dimensional search is about one and a half orders of

magnitude more than cost of the MFB one-dimensional
search.

.
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